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Abstract—A general constitutive model for concrete is discussed in which the total strain rate is
decomposed into elastic, plastic and damage strain rates. The rate equations are formulated for all
strain rate portions together with evolution rules for hardening and damage state variables. The
coupling effect between damage and plastic deformation is considered by introducing yicld and
damage surfaces and formulating proper interaction rules. Both axisymmetric and general three-
dimensional stress states are considered for which monotonic and cyclic foading conditions are
assumed. The model is aimed to describe material behavior for a varicty of loading histories. Its
applicability is illustrated by considering uniaxial, biaxial and triaxial compression with superposed
shear stresses.

[. INTRODUCTION

In numerous cases involving non-conventional design of concrete structures there is a need
for more refined inclastic analysis of concrete that takes into account phenomena such as
progressive cracking and inclastic deformation. Such incremental analysis is usually
required not only to provide an asscssment of the failure load but also to predict deforma-
tional response and the degree of degradation in states preceding eventual collapse. Tall
buildings, offshore oil platforms, nuclear reactor containment structures, and gasification
vessels, cte. are exampiles of such complex structures for which a refined incremental analysis
is required.

The inclastic analysis should be based on a properly formulated and sutficiently accur-
ate constitutive model for concrete. Considerable progress has been made during the last
two decades in developing constitutive models for concrete and schemes for conducting
inclastic analysis of reinforced concrete structures. A comprehensive review of these devel-
opments can be found, for instance, in a book by Chen (1982). Concrete has usuaily been
modelled as a non-lincar elastic by Cedolin et al. (1977), Chen and Chen (1975), Kotsovos
and Newman (1978), a hypoelastic by Elwi and Murray (1979), Gerstle (1981), Liu er al.
(1972), a perfectly plastic or a hardening and softening clastic-plastic material by Mroz
(1973), Murray et al. (1979), Willam and Warnke (1975). Depending on the type of
structural problem, it may be possible to use such simplified constitutive descriptions to
simulate structural behaviour with a sufficient degree of accuracy.

However, at present there is no generally accepted constitutive model that could be
used with confidence to simulate material response under a variety of loading conditions
including both monotonic and c¢yclic loading. Besides structural applications, such a general
model could also be used to describe experimental results obtained for complex stress states
and loading historics, thus facilitating understanding and interpretation of the material
behaviour.,

The present paper is aimed at formulation of a constitutive model that can account
for progressive matcrial cracking and irreversible deformation under both monotonic and
cyclic non-proportional loading in the pre-critical range. The basic assumptions and the
general structure of such a model have been discussed in the earlier paper by Dragon and
Mroz (1979). and here we shall develop this formulation further. It will be assumed that
internal damage (or cracking) is accompanied by irreversible (or plastic) deformation and
the total strain rate is decomposed into elastic, damage (cracking) and plastic portions—
for which independent rate equations are formulated. The coupling between damage and
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plastic deformation is accounted for by introducing hardening and degradation state vari-
ables and proper evolution rules. The discussion of the coupling implications can be found
in the paper by Hueckel and Maier (1977). Since viscous effects are neglected thus the strain
increments or rates are treated as instantaneous. The extension of the present model to
the post-critical range requires incorporation of additional effects in conjunction with a
localization of deformation. However, they cannot be described at the material constitutive
level.

Related formulations involving elastic-cracking models for concrete have been pre-
sented by Dougill (1976), Dougill es al. (1977), Krajcinovic and Fonseka (1981), Mazars
(1982). and an elastic—plastic—cracking model was discussed by Bazant and Kim (1979).

In Section 2, the basic model assumptions and the structure of the constitutive equations
are presented. whereas in Section 3 the model is applied to simulate uniaxial, biaxial and
axisymmetric triaxial compression tests. The general three-dimensional formulation is also
provided and is used to predict some recent experimental data.

2. FORMULATION OF CONSTITUTIVE MODEL FOR CONCRETE

As described by Dragon and Mroz (1979) the model formulation is based on the
assumption that the plastic deformation of concrete and progressive damage (fracturing)
may occur simultancously or separately depending on the stress state. Under monotonic
loading the plastic deformation is associated with accumulation of irreversible strain,
whereas the damage process is macroscopically manifested as stiffness degradation during
unloading. The macroscopic irreversible strain is attributed to micro slips occurring at
cracks within the mortar or at the mortar-aggregate interface and also to irreversible
opening of cracks under tension. The variation of elastic compliance results from progressive
cracking usually occurring in a stable manncer before the critical crack density is reached.
Although concrete is a composite material, it will be described in terms of total stress and
strain states without decomposition into mortar and aggregate states.

The alternative treatment of concrete as a composite material has been presented by
Ortiz and Popov (19824, b}, and Ortiz (1985). Whereas such an approach is physically more
sound, it eventually results in constitutive relations expressed in terms of total stress and
strain components that are regarded as an external action on and a response of the representa-
tive clement. We therefore use a phenomenological approach and regard stress or strain
states as average values over the representative element composed of both mortar and
aggregate. The composite character of concerete should be reflected in the selection of proper
forms of yield and damage surfaces and also in the evolution rules for the appropriate state
variables.

Referring to Figs 1{a)-(d), the total strain rate or increment & can be decomposed
into elastic and inelustic portions £° and &', where the inclastic portion is composed of plastic
and damage terms £° and £°, thus

£ = 8548 = & 6P+, 0

Denoting by C° and D¢ = (C%) ' the clastic compliance and stiffness matrices, we have

& = C¢ @)
and
6= D% =D(—¢) = ¢°+d¢' = ¢°+d"+¢* 3
where
6 =D% d" = ~D%, ¢¢=-D%, ¢ =—-D%. (4)

Figures 1(b)-(d) prescnt the decomposition of the total stress rate associated with the
specified strain rate into elastic and inelastic components. It is seen that ¢' now plays the
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Fig. I. Total stress and strain rate components : (a) clastic; (b elastic-plastic: (c) elastic-damage ;
(d) elastic-plastic -damage.

role of a relaxation stress rate imposed upon the elastic stress rate 6° associated with the
specified strain rate.t The incremental (or rate) constitutive equations will have the form

£=Cd, a=Dé C=D (5)

where C and D arc the tangent compliance and stiflness modulus matrices. It is assumed
that these matrices depend on stress or strain states and on a set of hardening and damage
state variables & and w, thus

C =C(o.e.x,w), D=D(o,ce x w). (6)

The state variables will be defined later. Their evolution rules will be more precisely
formulated by introducing the concepts of yield and damage surfuces specified by

Fla,k) =0 or ¢(e.k)=0 (7
and
De.w)=0 or A(e,w)=0 (8)

where F =0, D =0 are the yicld and damage surfaces specified in stress space, whercas
¢ = 0 and A = 0 arc the respective surfaces in strain space. Thus. for states represented by
points lying within the domain enclosced by the yield surface in the stress or strain spaces,
there is no plastic deformation process taking place whereas plastic flow occurs whenever
F = F = 0. Similarly, the damage process occurs when D = D = 0. At the intersection of
the damage and yield surfaces a “‘corner” regime occurs and the incremental rules are
properly modified.
Using decompositions (1) and (3), we can write

t The matrix notation is used in eqns (2)-(4) and subsequent formulas. Thus Aa = A4,,6,, Cd = C, ,d,,denotes
the product of matrices of different orders. The scalar product is denoted by a-b = a™b = a5, and the tensor
product by a®b = a.h,.



394 M. KuisiNski and Z. Mgroz

C=C+C’+C% D=D+D°+D‘ )

so that
& =C9, & =C%, & =C% (10)
¢ = D% d° =DPi, ¢'=D' (1

Thus. in the elastic region there is D! = D? = C? = C¢ = 0. When only damage takes place
then C? = D* = 0: when only plastic flow occurs, then C¢ = D* = 0, whereas for the case
when coupled damage-plastic flow processes occur all matrices of eqns (9) participate in
the constitutive relation.

Assume now that the total strain consists of the sum of reversible and irreversible
(plastic) strains, as shown in Fig. [, thus

g=¢+¢e" =Co+e". 12)
In fact, the damage strain is reversible and during unloading, no permanent strain develops
due to the damage process. In eqn (12), the matrix C° represents the secant compliance
moduli tensor, and it is the sume as the tensor of tangent moduli in the case of linear
elasticity. Differentiating cqn (12), we obtain
i=Cd+Ca+i" =i+ +¢" (13)
In view of egns (10) and (13) it follows, with the assumption of lincar clasticity, that
C'é = Ca (1%
and similar relations are derived for the stiffness moduli. Inverting eqn (12), we have
g=D(e—¢") and & =DE—D+D(e—e") (15)
and in view of egns (11) and (15), there is
DY = D(e—2") (16)
where D¢ denotes the secant stiffness moduli matrix. Relations (14) and (16) impose
constraints on matrices C* and DY,
Now, let us discuss consceutively plasticity, damage or degradation and coupled effects
in concrete.
2.1. Plasticity
Assume, as usual, that the yield surface depends on both stress and a state variable «,
thus
Flo,x) =0 (an
where the evolution rule for & takes a general form

Kk = k(€°). (18)

It should be noted that the flow rule is not necessarily associated with the yield surface
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=im Ai>0 (19)

where m specifies the direction of plastic low. The scalar multiplier J is determined from
the consistency condition

F=F, ¢+F, k=0 (20)
which provides
i=Lig 21
L= fed 2
5o that
o 1 . .
& = ﬁ(“‘ ® g = C¢ (22)
where
f= P" |F,|=(F, F)" 23)
F " T e

and the comma preceding an index denotes partial differentiation. For hardening behaviour
the loading -untoading conditions can be specified in terms of the stress rate, so that

C*=0 when <0 and F=0 or F<O. 24

However, for softening behaviour, we have to specify loading -unloading conditions in
terms of the strain rate.

2.2, Degradation
The specific elastic stress energy per unit volume U is now a function of both stress
and the damage variable o, U = U(a, w) so that

(e, w)
r sl i s 2
£ (g, w) P (25)
The strain rate is obtained from eqn (25)
U U g
37 e T g = g4 ¢ 2
¢ 06®5ca+é‘¢®é’ww et (26)

Assume that the damaged surface is specificd in terms of stress and the damage variable o,
thus

Die.w) = 0. 27

Alternatively, onc can specify the damage surface in terms of strain, so that
Afe.w) = D[D(e—¢"). @] = 0. (28)
Some authors, notably Dougill (1976). Krajcinovic and Fonseka (1981), Bazant and Kim

(1979) assume normality between the stress rate ¢¢ and the damage surface formulated in
strain space, so that

HAS 24:4-2
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¢t = ca 29

%" 29)
This rule is equivalent to the assumption of normality of the damage strain rate §° to the
damage surface formulated in stress space, namely

o =2 30
e (30)

In fact since D = A& = 0 it can be written, in view of eqn (28), that

éd _¢Dds 2D

w.—__..._..._*

D)

Multiplying both sides of eqn (31) by C* = (D)~ ', the equivalence of eqns (29) and (30)
is demonstrated.

It should be noted that the implications of the associated damage rule (29) or (30) are
too restrictive, if we assume an isotropic material response. Consider, for instance, the case
of pure shear for which 5, = 0. Starting from Hooke's law &, = 1/(3K)ay,. the volumetric
damage strain is specified as

«

1
& = lon ( K) =0 32)

whereas the associated damage rule (30} would provide
£ = ] o, 33

To satisfy eqn (29), that is consistency between egqns (32) and (33), the gradient tensor to the
damage surface should have no spherical component for g, =0. Only surfaces representing
conditions such as Huber-Mises or Tresca, not depending on hydrostatic pressure satisfy
this requirement, Such surfaces, however, cannot be used to represent the damage condition
for concrete which should be pressure dependent. We can, of course, depart from the
assumption of isotropy, by introducing the concept of a more general anisotropic structure
of a damaged body. Whenever, for the sake of simplicity let the isotropy assumption be
preserved, as a consequence the non-associated damage rules should be used in order to
satisfy eqn (29) or eqn (30). The assumption of isotropic elastic degradation is, of course,
controversial, but it is our assessment that there are two reasons for it to be justified. The
first is a lack of experimental data sufficient to identify material parameters for more
complex models, and the second involves the review of experimental evidence related to the
initial stages of degradation where both microcrack locations and directions of propagation
are random. Therefore, in the pre-critical range a serious departure from this assumption
can be observed only for stress'states close to ultimate strength. In the post-critical range
the present model is intended to be supplemented by a localization model at the clement
level. Such effects as directionality of crack propagation and closure of cracks, when the
foad dircction is reversed, will be considered in the future as ingredients in the localization
model.

Another possible description of the elastic degradation is based on the thermo-
dynamical considerations and can be found in the papers by Lemaitre (1985) and by
Simo et al. (1987).

Instead of formulating directly the damage rule, we can use the energy balance equation
for a representative element and specify the rate of dissipation associated with damage.
Considering a quasistatic damage process and neglecting thermal effects, we can write
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Fig. 2. Damage proportionality factor: (a) ¢ = 1: (b) model behaviour for different ¢ values; (¢)
continuous degradation process.

W=U+R+2 (34)

where W is the rate of work of external tractions, U denotes the rate of elastic energy, R is
the plastic dissipation rate and Z denotes the damage dissipation rate. For macroscopically
homogencous stress and strain states, the terms occurring in eqn (34) can be referred to the
unit volume of the clement. Let us note that in Griffith's theory the damage dissipation rate
is expressed in terms of the specific surface energy and the rate of growth of crack arca. In
our approach, we do not explicitly specify the damage in terms of crack area. It will be
assumed that Z constitutes a portion of the available work rate for fracture, that is

Z=¢(W-R) (39

where ¢ is a proportionality factor. If there is no plastic flow, then R = 0, and eqn (35)
specifies the portion of external work rate dissipated in damage. In the uniaxial casc, eqn
(35) then provides a relation between tangent and secant moduli of the stress—strain curve.
In fact, since W = a¢, U = 1/20é+ 1/2d¢, R = 0, from eqn (35) it follows that

=12 (36)

where E, = da/de denotes the tangent modulus and E, = g/e is the secant modulus. Figure
2 illustrates the character of stress-strain curves for different values of ¢. When ¢ = 1/2,
then Z = U = |/2W, E, = 0 and the stress-strain curve resembles that of perfectly plastic
behaviour. When ¢ = 1, there is U = 0, Z = W and ge = const. Perfectly brittle behaviour
corresponds to ¢ — 0. For ¢ > 1/2, a stable stress-strain curve is generated. In writing
eqn (35). we exclude the possibility of an uncontrolicd progressing damage at fixed strain
of the representative element. Such progression may only occur for an inhomogeneous
system containing a damage zone and a surrounding ¢lastic material domain.

For a more general formulation, the scalar factor ¢ nced not be constant but can
change during the deformation process. Note that for an arbitrary stress-strain curve, the
scalar function ¢ can be identified from eqn (36) by knowing secant and tangent moduli.
It can be assumed that for a sufficiently general class of stress-strain curves the factor ¢
increases along the curve. It can therefore be assumed to be an independent damage variable
specified in terms of the compliance moduli. It turns out that by using eqn (35) we can
derive the constitutive equations for the damage process and next couple it with the plastic
deformation process.
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2.3. Constitutive relations for the axisymmetric case

Let us first formulate the constitutive relations in terms of unordered principal stresses
for a case when two principal stresses are equal, o; = 3. Such a state is typical in testing
of cylindrical specimens subjected to axial extension or compression and lateral confinement
pressure (triaxial tests). Introduce the following stress vector :

__|”
- [7] o

where
p=—%o+20,), g=0,~0, {38)

are the hydrostatic and shear stresses. The conjugate strain vector is

i= [e] (39)
&

& = —{&;+282), g, = §(32"“3:) (40)

where

so that
&= pr,+qe, = 0,6, +20,8,. 4n

Hooke’s law for specificd stress and strain states has the form

i
K T

P=Ca C= | =[ 9] @)
o L] Lo s

3G

where K and G are the bulk and shear moduli. The compliance moduli are denoted as

JLosad "
=% 5=3 43)

T
and the specific elastic stress energy for an isotropic material takes the form

U= TP+ 5¢%). (44)

It will be assumed that the compliance moduli constitute the damage vector, so that

& = [ﬂ (45)

In fact, due to progressive cracking both T and § will vary, so they can be assumed to
represent the damage state of the element. This approach reduces the number of variables
and can be related to hypoelastic models with variable elastic moduli.

Differentiating eqn (44) one obtains



Description of inelastic deformation and degradation of concrete

U=1p*T+4i¢’S+Tpp+5Sqe¢

and
W—R = 6(E—&) = 6(C6+C6) = pT+¢*S+ Tpp+5qq.

From energy balance (34), it follows that

Z=W-R-U=1p’T+i¢’S
and condition (35) provides the equality

(-9) (P’ T+4*S) = $(Tpp+Sqq).
The consistency condition for the damage surface
D(@G+6,.0+@) =0

furnishes the second equation specifying the evolution rule for T and S, namely

D T+DsS = —(D,p+D9).

A solution of eqns (49) and (51) takes the following form:

o = Qd
where
0= l[ STpDs+(i~)g’D,  $SqDs+(—P)g*D, ]
Al -¢TpD+(i—¢)p*D, —0SqDr+(i—9)p*D,
and

A=(-9)(p'Ds—q’Dy).

399
(46)

“7

48)

(49)

(50

&)

(52)

(53

(34)

Equation (52) can be regarded as the evolution rule for the damage vector & relating its
rate to the stress rate during the active damage process. In view of eqn (41) the damage

strain rate can now be presented as

hence

where

To obtain eqn (55) we used the identity

(55)

(56)

(57
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s _ [T 0][p]_[p O}[T]_+.
Cra = [0 S] [q] - [0 «?] [S] = Ad. 58

For A = 0, relation (52) specifies the limit state corresponding to maximum stress. To
avoid multiple limit points, a special form of the damage surface is assumed, namely

D=D@E.¢)=0 {(59)
and
¢ = ¢(T.5) = P(&). (60)

This means that the damage condition depends explicitly on the scalar function ¢, which
in turn depends on the compliance moduli T and S constituting the damage variable. The
change of damage surface is therefore associated with the variation of ¢. However, as the
damapge process can proceed at constant ¢ (cf. Fig. 2), 7 and § may vary for some loading
paths lying inside the surface D = 0. Writing

Ds=Dybs. Dy=D,yds (61)
the expression for A takes the form
A= (§“¢)D.¢(I’z¢.s—‘12¢.r)« (62)

Assume now that D, = 0 only for ¢ = 1/2. The damage surface then becomes the limit
surface, For other values of ¢, the function A should not vanish, This can be achieved by
assuming that ¢ ; and ¢ have opposite signs,

The condition Z > 0 occurring for an active damage process can be geometrically
interpreted by calculating rates 7 and S from eqn (52) and substituting into eqn (48). We
obtain

Z=d,"620 (63)
where
v
d :3ifb[z;]: fi% g& 9
oq

is the vector normal to the surface of constant stress energy U = const, On the other hand,
the loading condition associated with the damage surface is expressed as

where

11D,

i 65
D, [D] ©

is the vector normal to the damage surface D = 0. Let us note that the matrix £} specified
by eqn (53) can be decomposed into two portions, namely
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Fig. 3. Corner regime of damage model.

N=0,+0, (66)
where

U [ 1Dy SqD.s] ¢ [qb.s]
Q = = 3 3 T
| A"’[—Tno.r _8,0. T =9 ros—abn L-b, )7 59

| q:D q:D_q :] 1 |: q2 ]
0, = |- L7 N = - " . o, D). 67
=46 'b)[-p'l).p -p’D,) Dypbs—q*d) L -p° [0, D). (67)

Thus, when ¢ < 1/2, the following unloading conditions arc valid :

Q, =0 when U<U, or U=U, d,°6<0
Q,=0 when D<0 or D=0, d,°6<0. (68)

For ¢ > 1/2 the process is not controllable by the stress rate and the strain rate should be
used. Here U, denotes the actual value of the stress energy reached during the previous
loading history. Conditions (68) are typical “corner” unloading conditions governed by
two surfaces U = U, and D = 0 (Fig. 3). Note that continuity conditions are satisfied for
d,-é =0and d,-6 = 0. It is scen that when © = €, the elastic moduli vary at constant
¢. On the other hand, when € = €., the scalar function ¢ varies at vanishing damage
dissipation rate, Z = 0. When Q = Q, 4+ Q,, both variations of ¢ and of the elastic energy
oceurs,

Consider now the hardening rule associated with plastic deformation. Assume the
following associated flow rule:

=il iz20 (69)
where
= fp:l_,LI:F']. - . 12
T= [f'l - F lLF, i |Fal=(F4°F,) (70

is the normal unit vector to the yield surface F = 0. The following hardening variables are
used to specify plastic hardening and coupling with damage :
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= ["} a1
gl

The rates of x and f are

K =[]l

B=er+a. (72)

provided both plastic deformation and damage develop simultaneously. Here x corresponds
to deviatoric hardening, whercas f represents the volumetric plastic hardening or softening
and the damage effects which are accounted for only through the volumetric part of the
damage strain. Parameter x is a weighting factor between plastic and damage volumetric
strains. Deftoting by C, and C, the respective terms of the matrix C* specified by eqn (56)
we may write

&= Cp+Cyq. (73)
From the consistency condition
F=F,6+F.x+Fyf (74)
and the flow rule, we obtain
& = ;I [i"] (£ + EuxCpe Fy+FpaC,) (75)
«f
where
H = ~(F,IF,|+F4F,). (76)

Thus despite the associated flow rule (69), the resulting refation
& = CPg an

is generated by a non-symmetric compliance matrix CP. This nonsymmetry is due to the
effect of coupling occurring between damage strain and plastic hardening. When both
damage and plastic deformation occur simultancously. the stress state is represented by a
line created by the intersection of two surfaces. Since it is assumed that the plastic strain
has no effect on the damage, but the damage strain effects plastic hardening, this results in
nonsymmetry of C?. Only when £ = 0 or 2 = 0 the matrix € is symmetric. The loading
condition for the plastic surface has the form

Fra>0 (78)
. [F.+ F,,:tC’,,]
= : ; . 79
r [1:.(1 + F;‘!ch ( )

2.4, Constitutive model for multiaxial stress and strain states
The previous formulation can now easily be extended to general stress and strain states,
Introduce the stress invariants
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Ji=0y =0,4+0:+06; =0,+0,+0;

Jy=lsys, = Aot +si+si) = Msl+s) +sH+ed 410 +1d

SX rXV r:‘
Jy=Assus; =555 =1, 5, T, (80)
Tee Typr  3:

where s;; = 6,,— 1/36, ,; denotes the stress deviator. An alternative set of invariants
2 4
oo = 3J1. p=7§\/13, 6=§arcos~;)—,3 (81)

is more useful in formulating the constitutive relations. The principal stresses are now
expressed as follows in terms of 5. p, and 8

o, gy cos
o:|=|aq|+p]cos (0-2.3m) |. (82)
G o cos (0+2/3n)

Let us assume that p and ¢ used in the axisymmetric casc can be related to invariants (81),
in the form

pP= =0y

q=1g(0)p (83)

where g(#) accounts for the dependence on Jy. When ¢, =0 and 0 =n/3 and p and ¢
specified by eqns (83) become the stress components related to the triaxial test as seen in
eqns (38), it is assumed that g(n/3) = 1. By using eqns (83) we assume that the yield or
damage condition is expressed in the special form F(g,, g(0)p) = 0. This means, in particu-
lur, that the shape on the deviatoric plane is independent on the hydrostatic pressure. The
stress rate 4 in an axisymmetric case can now be related to principal stress rates or to stress
rates in the reference system x, y, 2. Thus

o= Q2430 or G = L0 JPTRY PR (84)
where
o =[01. o1 ayf
a(bl = {O.,t' U;w G:‘ r.(yv Ty:' t:x}T (85)
and
p.ﬂ, P.d p»")
Qin n= [ : ]
Go, 4. Go,
p"’t p'”v P"' p"n’ p" ] P"M
Q Ix = [ ) ¢ ]' 86
T ey o, Qo Do e G, (86)

The matrices of elastic compliance are expressed in terms of T and Sina form
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T ¢ IT_ST_S
9 9 2 9 2
T ST T S
Cliisy = 973 '9"+S 373 (87)
T ST ST g
L9 2 9 2 9 |
and in an abbreviated form
Ce 01 3
C= . = (3= 3) (3x3) ] 88
68 [o 35T ®%)

where 0 denotes the null matrix and I the unit matrix. The following equalities can be
expressed as:

I -
C(_u 0Oy = A @

C(Eﬁx a8 = Ao :J“j (89)
where
/]
-8 ai=los+ay
Avey= | = .-} 90
(xny = 3 02 o +ay) (90)
=0 e+
and
- 5
-5 a-lo+a
)
-5 a-lota)
Awen = 1)
e -—g ag.— Yo +0,)
0 3c,,
0 37,
L 0 3z, ]
The damage striin rates now are
é:‘.!) = Cf‘sn non
£l = Clixnbio 92)

where the matrices Cfy . 3, and Cj, ¢ are specified as

C:‘an = A(Jx:)QQ(:x,u
Cloror = Aox 22Q02x 6. 93)
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The stress gradient of the yield condition F(a,x) = 0 can be calculated by using gradient
expressions F ;, namely

F,=F,Q. 94)
The flow rule is therefore presented as

éer » = Cfs: 3)0"(3)

&l o) = Clox b 95)
where

Chay = Q(sz J)CPQ(Zx 3
Clixe) = Q2x9C?Qeaxs) (96)

and the vectors occurring in loading-unloading conditions are

f(:) = TQ(:-‘ e dm = aQ(Zx »
f(o) = TQ(zxs» d(o) = aQ(zxe)- 97

2.5. Constitutive model for variable loading

So far, we have assumed a linear clastic unloading within the domain enclosed by
the yield and damage surfaces. Since during unloading or reverse loading irreversible
deformations occur, and hysteretic behaviour is observed for cyclic loading, we can resort
to a description of unloading or reloading phenomena similar to that proposed for soils by
Mréz and Norris (1982), and Mroz and Pictruszczak (1973), and applying a multisurface
formulation. A model version called INS will be used and further modified in order to
describe more realistically cyclic concrete response.

In that model an active surface is constructed during unloading, and it is similar to the
yield surface reached during the loading process and affine to it at the point from which
unloading started. The yield surface reached during the loading process will now be called
the maximum loading surface and the point of unloading will be called the reversal point.
The direction of the plastic flow is normal to the active surface. The value of the plastic
strain increment depends on the size of the active surface in comparison with the yield
surface and on a value of the plastic hardening modulus at a conjugate point. The conjugate
point lics on the maximum loading surface where its gradient has the same direction as the
gradient of the active surface at the actual stress point. The increment of plastic strain can
be described as:

1
P = g
HH.7) (r-a)f (98)
where
R
V=R

R.. R are the dimensions of the active (F, = 0) and maximum loading (F = 0) surfaces,
the unit vector normal to the maximum loading surface at the conjugate point, A the plastic
hardening modulus at the conjugate point, 4 the plastic modulus at the actual point, and r
the loading vector (cf. eqn (79)).

When the loading direction is subsequently changed, a new set of active surfaces is
created. They are also tangential to the previous surface at the reversal point. This procedure
ensures that the active surfaces cannot intersect, and when a point lies on two of them, they
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Fig. 4. Geometrical relations between active and maximum loading surfaces.

should coincide. There is only one exception—the reversal point. When it is reached a
second time, the actual and previous surfaces can only be tangential. In this case an apparent
discontinuity on the otherwise smooth stress—strain curve is observed, because of a jump
change in the magnitude of the plastic modulus . From this point of view the reversal
points are singular.

This disadvantage can be eliminated by changing the evolution rule for the active
surfaces. The active surface should not be tangential to the yield or previous surface at the
reversal point. It must move into the domain enclosed by the maximum loading surface.

In the classical multisurface model the active surface is defined by the reversal point
and the ratio of the characteristic dimensions y. Now it is necessary to add one more
variable and paramcter. Inside the maximum loading and active surfaces a characteristic
point must be defined, e.g. the centre. Let us assume that the centre of the active surface
always lics on the line joining the maximum loading surface centre and the reversal point.
The active surface centre divides this segment in a precise ratio

99

DR

where « is the distance between the active surface centre and the reversal point and b is the
distance between the centre of the maximum loading surface and the reversal point (Fig.
4). In the presented model the origin has been chosen as the characteristic point inside the
yield surface.

Both parameters y and 8 can change from 0 to 1. Let us assume temporarily that the
functional dependence between y and d can be established (such that 8 2 y in order to avoid
intersection of these two surfuces). Such a function should satisfy the conditions

70 =0, y(h)=1L (100)

If a linear function was defined, this model would give the same result as the INS model.
If the other function was used, the interior of the maximum loading surfuce would be
divided into two scts of points. The first would consist of the points which could be reached
using this evolution rulc in 2 smooth way and the second the points which can be reached
only after a jump in both y and 4. In this case the result would be the same as at the reversal
point—a corner or discontinuity in the stress-strain curve. Because this is an unwanted
feature, the relation between y and 6 cannot be defined in advance. The simplest evolution
rule without these disadvantages can be proposed in the following way.

Let us assume that at each point two ditferent evolution rules are possible and the one
that is used depends on the direction of a given stress increment. The first version causes a
drift of the active surface into the domain enclosed by the maximum loading surface, and
it can be written in the form
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o. .
;7 ify#00@0 <) (101)

o7 fy=0(co21)

where ¢, corresponds to the initial tangent of the d(y) curve. This evolution rule is used
when the next stress state can be reached without any discontinuity and defines an envelope
of the active surfaces inside the maximum loading surface. In the cases when the stress
point moves outside the envelope, the second rule is applied. This rule does not result in
drift but results only in the active surface expansion. It can be described by

§=-_25. (102)

This plastic model is a generalization of the multisurface model and can be reduced to
the last version by the assumption ¢, = 1. [t is also closely related to the subloading surface
model by Hashiguchi (1980) or to the radial mapping version of the bounding surface
model by Dafalias (1986). Instead of describing d as ratio (99) it may be easier to introduce
the position n of the centre of homothety between the active and maximum loading surfaces.
The precise mathematical relation between old parameters y and ¢ and a new variable n is
given by

y(1=n) =d-n. (103)

When the projection centre of homothety coincides with the reversal point y = 0, and the
valuc of 5 increases to 1, the projection centre moves toward the centre of the maximum
loading surface. The first evolution rule describes such a process, whereas the second rule
corresponds to the fixed position of the projection centre. Therefore, y and 5 can be used
as the model variables and the evolution rule can be specified in terms of the movement of
the projection centre.

The plastic modulus function A has to satisfy the following conditions:

MH.7) =0 fory<y®
hH1)=H (104)

where y° describes an elastic region and H the value of plastic modulus at the conjugate
point.

The first condition means that inside the elastic region the plastic strain increment
should equal zero. The second one assures the consistency with the classical plastic model.
From the numerical point of view it is better to use the following function :

hH,y) = H+(M-H) (1 -y) (105)

where the constant M should be much larger than the maximum value of H. This function
satisfics the first condition only in the weakened form

hH.7) =M for y<y* (106)

but in spite of its simplicity it has been successfully applied to soils.
This modification affects only the plastic part of the model, but a similar concept can
be used to extend the degradation model to cyclic loading.
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Fig. 5. Yield and degradation surfaces on the p—¢ plane.

3. COMPARISON WITH EXPERIMENTS

The model has been compared qualitatively with two sets of experimental results by
Kotsovos and Newman (1978) and Kupfer ez al. (1969). They contain a sufficient number
of experiments to properly identify material functions, but they are restricted to monotonic
conventional triaxial and plane stress tests, respectively. In order to show the model’s
behaviour for other stress states and paths a qualitative comparison has been made with
cubical cell data by Scavuzzo et al. (1983). Their experiments cover cyclic behaviour, but
do not include any tension results. Other experimental data, which were available two or
three years ago, did not provide sufficient information to identify material functions in both
tension and compression, except for the strength, which is predicted correctly. The authors
prefer not to present comparisons which only represent curve fitting.

It is also neccssary to mention that the identification process involves material
functions, which have specific physical meaning. However, these functions are approximated
by elementary functions, the coefficicnts of which usually do not have any physical inter-
pretations.

The post-critical parts of the stress-strain response curves shown in the following
figures should be treated as extrapolations of the current model behaviour to that range.

3.1. Axisymmetric tests

The present model was first applied to describe the confined compression tests made
on cylindrical specimens. In these tests two principal stresses are equal and the p—¢ plane
stress and strain measures can be used. The following forms of the yield and the degradation
surfaces have been assumed :

F(p.q.x.B) = ¢*+ A(p— P,) [p— B(x, B)]
D(p.q,¢) = |gI** = C(¢) [p—dC*(¢)] (107)

The first expression represents an ellipse which intersects the p-axis at the points Py and 8.
The second describes a parabola with a vertex at the point (—dC?0). They are shown in
Fig. 5.

Function ¢ was assumed to depend only on 7. It means that only changes of the bulk
modulus K are important. The changes of shear modulus G does not affect the degradation.
Functions B, C, ¢ were matched according to experimental results and are of the form

B(k,B) = b, In (k+b2)+b; exp (bsfl) +bs

“M=Er—m
¢(D=¢;(7T;—l)ﬁ. (108)

Function C(¢) can be found from C(T) and ¢(T).
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Fig. 6. Confined compression test. Experimental data by Kotsovos and Newman (1978).

The experimental data of Kotsovos and Newman (1978) have been used for identi-
fication. The cylindrical samples were subjected to hydrostatic pressure and next compressed
axially with a constant lateral pressure. Three types of concrete were used : /7 = 31.7, 46.9,
62.1 MPa. For cach of them four different maximum lateral pressures were applicd. Figure
6 shows the experimental and theoretical results for the £ = 31.7 MPa concrcte. The results
for higher strength concretes are similar and are thus not shown.

3.2. Biaxial compression

As the sccond set of experimental data the biaxial planc stress experiments made by
Kupfer er al. (1969) were used. The experiments were made on thin square samples subjected
to biaxial compression with different principal stress ratios ranging from 1/0 to 1/1. The
strength of this concrete was /7 = 21.1 MPa,

Even though these tests are not cyclic, it is better to use the cyclic model to describe
the experiments. The main reason is that this model allows for a smooth transition between
clastic and plastic regions. The entire stress-strain curve is smooth without any corners. To
usc this model it was necessary to change slightly the form of the yield surface, and now

F(p.q.x. B) = ¢+ Alp+/,B(x. B)] [p — B(x. )]. (109)

Both points on the p-axis move during hardening and when B tends to zero the yield surface
tends to the origin. Thus, at the beginning all active surfaces have their characteristic points
at the origin. Function B(k, ff) is of a more general form

B(k,p) = b, exp (h:f)+ by (k+b,)'s +bs. (110)

The other functions used in this model are of the form described in Section 2.5.

It is also necessary to take into account the influence of the third invariant, since 0 is
different for uniaxial and biaxial compression states. Without this feature the results would
be very inaccurate. For concrete it is well known that the failure surface is dependent on
the third invariant. The simplest smooth surface with this influence was proposed by Willam
and Warnke (19735). In terms of function g it can be described as follows :

4(1 —¢?) cos? B+ (2e—1)°
2(1 —¢?) cos 0+ (2e—1) [4(1 —e?) cos® 0+ 5¢*—4e]"?

9(0) = (n

where e is a constant which describes the distance ratio of the failure surface from the
hydrostatic axis for § = 0 and =n/3.
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Fig. 7. Yield and degradation surfaces in the principal stress space.

The description of the degradation surface is generalized by the assumption that the
power need not be 3/2, and that it also is a material parameter

D(p.q.9) = g =C(@) [p+d.C(¢) 4] (112)

This function intersects the g-axis with the samc inclination angle independently of the
value of ¢. The C(4) function controls the movement of the degradation surface

)
O = T (1)

In the pre-critical region the value of C increases and the parabola opens. When ¢ reaches
1/2 the degradation surfice becomes the failure surface and next in the post-critical region
the parabola closes and the intersection point on the p-axis moves right to zero.

The function ¢ depends on both arguments T and S and is assumed to be defined in
terms of a power function

MNT,S) = ¢ [ (T—T)"' —p%} + dullps+(S— S)}*»— o). (114)

Figure 7 shows the shapes of the degradation and yicld surfaces in the three-dimensional
stress space.

The shape of the failure surface is shown in Figs 8 and 9. It is compared with the
experimental data for various types of concrete in a normalized coordinate system. Figures
10-12 show the comparison with the biaxial compression experiments for the principal
stress ratios 1/0, 1/0.52, 1/1.

3.3. Triaxial cyclic tests

The model described above has also been verified in a qualitative sense for really
triaxial tests in which all three principal stresses are different. Such experiments were made
at the University of Colorado by Scavuzzo er al. (1983). Cubical specimens were tested
inside a cubical cell which allows for formation of any compressive triaxial state of stress
within cell capacity. The referred paper presents results for many paths in the stress space,
but does not contain the simplest types of results which could allow for a fast identification.

Two series of tests have been chosen for verification purposes. In the first, samples were
compressed hydrostatically up to a certain pressure value, next unloaded to zero and once
again compressed to a higher pressure. In this manner two cycles were performed. Next,
the hydrostatic pressure was fixed and cyclic loading was conducted in the deviatoric plane
for the constant value of the third angle invariant @ right up to failure. The experimental
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Fig. 10. Uniaxial compression test. Experimental data by Kupfer et al. (1969).
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Fig. 11. Biaxial compression a,/¢, = 1/0.52.

results arc shown in Fig. 13 and the theoretical prediction for the similar loading path in
Fig. 14.

The second series was similar except that the cycles in the deviatoric plane alternate.
One of the tests is shown in Figs 15 and 16, and an adequate relationship between experiment
and prediction is displayed. The other comparisons within these serics are also accurate
and thus omitted. The full verification of the model can be found in the report by Klisinski
(1984).

4. CONCLUSIONS

For a large number of tests model predictions fit the experiments with a high degree
of accuracy. The main limitations are the assumptions of isotropy and the homogencity of
deformation. At the post-critical regime a localization effect is very significant and the
macrocracks that develop have a dominant influence on structural behaviour. Further
model development should thus be oriented toward these problems and must be considered
at the structural level.
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Fig. 13. Cyclic triaxial compression test: (a) stress path; (b) experimental result by Scavuzzo et al.
(1983).
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(1983).
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APPENDIX
The partial derivatives of p and ¢ are
Doy = Pay=Pay= —4
00, = 5510000 Q51 =525 4@ [25, 53— 521~ 2838 =51 651+ 5]
G, = 3-%(9(0) sz =5 =51+ M2 25, =5, = 5] = p* (2515, = 52(5 +5,)])]
Qo = 3—:)» [9() (25, =5, —5,) +m2,[25, — 5, ~5,) — p*[255, = 5:(5, +5)))]

p.o' = Pa, =F.u, = "§

Pey =P, =P, =0

1 :
e = 3, () 25, —5, =) +m( (25, —5, =5.] = p* 25,5, = 17) = 5.(s5, + 5) + 1L, + 15 ])]
qo, = -';", (!’(0) ‘2-‘} -5, —s.) +'"(2'I‘[1“v =~ “.\'_.l —”2[2(-‘:“: - t:zt) =505 +)+ tfv + ri‘])l
Y
t s
q,t, had if; {.‘Iw) (:,'s: -5 —‘S,,) +’”(2‘,3{2": bt “Sv’ —p‘(Z(s‘x, - tfv) —s=("t +Sv) + tyxx + txle)l
2 3
e, = ; [-‘I(”)tw +m(2/,t,, “P'[fv,f" —“‘lrlyl)]
2 s
q,x" = ‘;{Q(U)Yv; + l"(z‘llty: _p'[t\yr:x bt M tv:])l

2 3
q.t" = ;[y(ﬂ)t,, +"'(2'I.Itu —p.[txyrv: _-"yt:xl)l

where we denoted
'

m



